ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Taisuke Yonomoto, Masaya Kondo, Yutaka Kukita, L. Scott Ghan,, Richard R. Schultz
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 112-122
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35380
Articles are hosted by Taylor and Francis Online.
Integral experiments simulating small-break loss-of-coolant accidents in the Westinghouse AP600 reactor are conducted using the ROSA-V large-scale test facility. These experiments show that the core makeup tank (CMT) behavior can be divided into two phases: the natural-circulation and the drain phases. The natural-circulation phase between the CMT and the rest of the primary is established immediately after the opening of the valve in the discharge line. The hot water from the primary, through the pressure balance line (PBL), accumulates in the top of the CMT, forming a clear thermal stratification above the cold initial inventory of the CMT. The drain phase is initiated by flashing in the CMT for break diameters ≤1 in. and by a gaseous flow from the primary for break diameters ≥2 in. Interactions between the CMT and the other safety components are observed: The CMT discharge rate is decreased by accumulator injection and is increased by actuation of the automatic depressurization system. When the PBL is empty of liquid, the CMT drain rate is approximately given by the free gravitational drain rate, irrespective of the flow direction in the PBL.