ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Mark S. Jarzemba
Nuclear Technology | Volume 118 | Number 2 | May 1997 | Pages 132-141
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35373
Articles are hosted by Taylor and Francis Online.
The assessment of long-term isolation performance for a geologic repository requires the use of mathematical models that consider the probability and consequences of postulated disruptive scenarios. In the case of the proposed repository at Yucca Mountain, Nevada, volcanism is one of the important disruptive scenarios being considered in site evaluation. A stochastic modeling approach is developed for use in simulating the airborne release of radioactive particulates associated with the basaltic volcanism scenario. The modeling approach considers such factors as the eruption energetics, eruption duration, wind velocity, and particle properties to compute the activity areal density as a function of spatial location. Various components of the model are based on empirical relationships and data that are reported for observed and monitored cinder cone eruptions analogous to those that likely occurred in the Yucca Mountain region in the past. Illustrative applications of the stochastic model are presented for the cases of a single-event realization and a multiple-event average realization.