ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Ferenc Adorján, Toshio Morita
Nuclear Technology | Volume 118 | Number 3 | June 1997 | Pages 264-275
Technical Paper | Reactor Control | doi.org/10.13182/NT97-A35367
Articles are hosted by Taylor and Francis Online.
Recently, continuous power reactor core surveillance, which is based on fixed in-core detector readings, has exhibited a trend of growing significance. The fixed in-core sensors can only be replaced during shutdown periods; therefore, it is important to have reliable information on the quality of each detector in advance to be able to create an appropriate detector replacement schedule. During the operating cycle, the continuous core surveillance system should rely only on reliable measurements, and only an effective detector failure diagnosis can ensure avoiding falsified information. At the same time, most published signal validation methods are not well suited for an extensive set of fixed in-core detectors. A relatively simple, though powerful and robust, method is proposed that can be applied for both signal validation and early failure detection. The basic idea of the method is that inevitably there exist such process noise components in the detector signals that are characteristically correlated within some well-determined groups of sensors. The lack of such correlation most probably occurs due to some detector failure. When a smaller, localized subgroup of the detectors shows a decreased level of correlation with the majority, that is typically caused by some abnormal event in the technological process. In such cases the results of this method can be utilized as a target identification tool for the more sophisticated noise diagnostics methods. The method has been thoroughly tested with an extensive data set, including rhodium self-powered neutron detectors and assembly outlet thermocouple signals, which was collected throughout a complete operational cycle of a VVER-440/213-type pressurized water reactor.