ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Toshio Wakabayashi, Katsuro Takahashi, Tsutomu Yanagisawa
Nuclear Technology | Volume 118 | Number 1 | April 1997 | Pages 14-25
Technical Paper | Kiyose Birthday Anniversary Special / Nuclear Fuel Cycle | doi.org/10.13182/NT118-14
Articles are hosted by Taylor and Francis Online.
Systematic parameter studies were implemented to investigate the basic characteristics [plutonium and minor actinide (MA)-burning rate, burnup reactivity loss, Doppler coefficient, sodium void reactivity, maximum linear heat rate, etc.] of plutonium and MA-burning fast reactors and also to clarify the feasibility of such plutonium and MA burner fast reactors. Highly enriched mixed-oxide (MOX) fuels and plutonium fuels without uranium were consideredfor plutonium-burning enhancement. It was found that plutonium consumption rates essentially depend on plutonium enrichment. Both burnup reactivity loss and Doppler coefficient are important criteria for highly enriched MOX fuel cores. Cores without uranium were found to consume the plutonium at a very large burnup rate close to the theoretically maximum value of 110 to 120 kg/TW · h(electric). The introduction of UO2 in an internal blanket is effective in enhancing the Doppler coefficient; it causes a minor increase in the sodium void reactivity in nonuranium cores. The MA transmutation in a fast reactor core has no serious drawbacks in terms of core performance, provided that the homogeneous loading method can be employed with a small fraction of MA fuel (∼5 wt%). Fast reactors have a strong potential for burning plutonium and MA effectively.