ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Hiromi Maruyama, Junichi Koyama, Motoo Aoyama, Kazuya Ishii, Atsushi Zukeran, Takashi Kiguchi, Akira Nishimura
Nuclear Technology | Volume 118 | Number 1 | April 1997 | Pages 3-13
Technical Paper | Kiyose Birthday Anniversary Special / Fission Reactor | doi.org/10.13182/NT97-A35351
Articles are hosted by Taylor and Francis Online.
A core analysis system has been developed for the recent advanced designs of boiling water reactors. This system consists of a fuel assembly analysis code VMONT and a three-dimensional core simulator COSNEX. To cope with heterogeneous structures found in the recent high-performance fuel, VMONT employs a Monte Carlo neutron transport calculation method. COSNEX is based on a three-group nodal expansion method to treat spectral interactions among fuel assemblies. Both codes are vectorized to meet timing requirements as design tools. The analysis system is verified by the tracking of recent plant operations. Although the analyzed cores are highly heterogeneous in the multienrichment configuration, the system gives sufficient accuracy both in critical eigenvalues and thermal power distributions.