ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Josef Bestele, Klaus Trambauer, Johann-Dietrich Schubert
Nuclear Technology | Volume 117 | Number 1 | January 1997 | Pages 109-123
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35339
Articles are hosted by Taylor and Francis Online.
Gesellschaft für Anlagen- und Reaktorsicherheit is developing, in cooperation with the Institut für Kernenergetik und Energiesysteme, Stuttgart, the system code Analysis of Thermalhydraulics of Leaks and Transients with Core Degradation (ATHLET-CD). The code consists of detailed models of the thermal hydraulics of the reactor coolant system. This thermo-fluid dynamics module is coupled with modules describing the early phase of the core degradation, like cladding deformation, oxidation and melt relocation, and the release and transport of fission products. The assessment of the code is being done by the analysis of separate effect tests, integral tests, and plant events. The code will be applied to the verification of severe accident management procedures. The out-of-pile test CORA-13 was conducted by Forschungszentrum Karlsruhe in their CORA test facility. The test consisted of two phases, a heatup phase and a quench phase. At the beginning of the quench phase, a sharp peak in the hydrogen generation rate was observed. Both phases of the test have been calculated with the system code ATHLET-CD. Special efforts have been made to simulate the heat losses and the flow distribution in the test facility and the thermal hydraulics during the quench phase. In addition to previous calculations, the material relocation and the quench phase have been modeled. The temperature increase during the heatup phase, the starting time of the temperature escalation, and the maximum temperatures have been calculated correctly. At the beginning of the quench phase, an increased hydrogen generation rate has been calculated as measured in the experiment.