ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
John G. Murphy, Michael L. Corradini
Nuclear Technology | Volume 117 | Number 1 | January 1997 | Pages 49-63
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35335
Articles are hosted by Taylor and Francis Online.
The occurrence of an energetic fuel/coolant interaction (FCI) below the reactor pressure vessel in the cavity of advanced light water reactors (ALWRs) are analyzed to determine the possible hazard to structural walls as a result of dynamic liquid phase pressures. Such analyses are important to demonstrate that these cavity walls will maintain their integrity so that ex-vessel core debris coolability is possible. Past studies that have examined this or related issues are reviewed, and a methodology is proposed to analyze the occurrence of this physical event using the IFCI and TEXAS models for the FCI as well as dynamic shock wave propagation estimates using hand calculations as well as the CTH hydro model. Scenarios for the ALWRs are reviewed, and one severe accident scenario is used as an example to demonstrate the methodology. Such methodologies are recommended for consideration in future safety studies. These methodologies should be verified with direct comparison to energetic FCI data such as that being produced in KROTOS at the Joint Research Centre, Ispra.