ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Masaaki Mori, Mitsuru Kawamura, Akio Yamamoto
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 171-183
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35323
Articles are hosted by Taylor and Francis Online.
Results are presented of a conceptual design study of a transuranium (TRU) fuel assembly consisting of only plutonium and minor actinide (MA) oxides for transmutation of MAs in a pressurized water reactor (PWR). The average plutonium content of the TRU transmutation fuel assembly in this study is 38 wt% Putot, and the average MA content is 62 wt%. The fuel rod arrangement and the plutonium content are optimized to suppress the internal power peaking in the fuel assembly. Core characteristics and TRU inventory change are evaluated for an 870-MW(electric) PWR core loaded heterogeneously with a few TRU transmutation fuel assemblies. The maximum loading of the TRU transmutation fuel is limited to nine assemblies to maintain a negative moderator temperature coefficient at the beginning of cycle, while satisfying a cycle length of 15.2 GWd/tonne U. By loading nine TRU transmutation fuel assemblies, the total MA inventory in the core decreases by —65 kg/cycle, which is approximately equivalent to that produced from three UO2 reactors. The heterogeneous loading of a few fuel assemblies with highly concentrated TRU in a PWR is found to be feasible for the effective transmutation of MAs while maintaining reactor safety.