ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Thomas J. Downar, Jen-Ying Wu, John Steill, Raghunandan Janardhan
Nuclear Technology | Volume 117 | Number 2 | February 1997 | Pages 133-150
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35320
Articles are hosted by Taylor and Francis Online.
High-fidelity simulation of nuclear reactor accidents such as the rupture of a main steam line in a pressurized water reactor (PWR) requires three-dimensional core hydrodynamics modeling because of the strong effect channel cross flow has on reactor kinetics. A parallel nested Krylov linear solver was developed and implemented in the RETRAN-03 reactor systems analysis code to make such high-fidelity core modeling practical on engineering workstations. Domain decomposition techniques were also applied to the RETRAN-03 solution algorithm and demonstrated using a distributed memory parallel computer. Applications were performed for a four-loop Westinghouse PWR steam-line-break accident, and performance improvements of over a factor of 30 were achieved for models with 25 flow channels in the core. Larger models (e.g., 104-core channels), previously inaccessible because of memory limitations, were also solved with practical execution times.