ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
U.S. nuclear supply chain: Ready for liftoff
Craig Piercycpiercy@ans.org
This month, September 8–11, the American Nuclear Society is teaming up with the Nuclear Energy Institute to host our first-ever Nuclear Energy Conference and Expo—NECX for short—in Atlanta. This new meeting combines ANS’s Utility Working Conference and NEI’s Nuclear Energy Assembly to form what NEI CEO Maria Korsnick and I hope will be the premier nuclear industry gathering in America.
We did this because after more than four decades of relative stagnation, the U.S. nuclear supply chain is finally entering a new era of dynamic growth. This resurgence is being driven by several powerful and increasingly durable forces: the explosive demand for electricity from artificial intelligence and data centers, an unprecedented wave of public and private acceptance of—and investment in—advanced nuclear technologies, and a strong market signal for reliable, on-demand power. Add the recent Trump administration executive orders on nuclear into the mix, and you have all the makings of an accelerant-rich business environment primed for rapid expansion.
Won-Jin Cho, Jae-Owan Lee, Pil-Soo Hahn, Kwan-Sik Chun
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 115-126
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35316
Articles are hosted by Taylor and Francis Online.
Radionuclide release from an engineered barrier in a low- and intermediate-level waste repository is evaluated. The results of experimental studies conducted to determine the radionuclide diffusion coefficients and the hydraulic conductivities of calcium bentonite and crushed granite mixtures are presented. The hydraulic conductivity of the mixture is relatively low even at low dry density and clay content, and the principal mechanism of radionuclide migration through the mixture is diffusion. The measured values of apparent diffusion coefficients in calcium bentonite with a dry density of 1.4 Mg/m3 are of the order of 10-13 to 10-12 m2/s for cations and 10-11 m2/s for iodine. These values are similar to those in sodium bentonite. The radionuclide release rates from the engineered barrier composed of the concrete structure and the clay-based backfill were calculated. Carbon-14 and 99Tc are the important nuclides; however, their maximum release rates are <10-5 GBq/yr. To quantify the effect of uncertainties of input parameters on the radionuclide release rates, Latin Hypercube sampling was used, and the ranges of release rates were estimated statistically with a confidence level of 95%. The uncertainties of the assessment results of the radionuclide release rate are larger in the case of the sorbing nuclides such as 137Cs. Finally, the sensitivity of the input parameter to release rate is also evaluated.