ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Takaaki Mochida, Katsumasa Haikawa, Jun-Ichi Yamashita, Akira Nishimura, Yutaka Iwata, Shiroh Arai
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 91-107
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35314
Articles are hosted by Taylor and Francis Online.
A boiling water reactor (BWR) core design for better uranium utilization is presented, and its validity is demonstrated through simulation and operation data. Together with the axial power flattening obtained by an axially zoned enrichment core, uranium utilization improvement techniques such as an axial blanket for neutron leakage reduction, a low leakage loading pattern, an improved local enrichment distribution in the fuel bundle, and spectral shift operation method are promising design features to be applied to the BWR core. Quantitative studies for the amount of burnup increase and power peaking rise are made to estimate a level of effective uranium utilization. The improvements in uranium utilization are confirmed not only in the computational core design study, but also in empirical data from a commercial BWR. Operating experience proves the adequacy of the core design. A uranium utilization improvement of >10% is obtained without a loss of load factor.