ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
IAEA: Gunfire, drone attack at Ukraine’s Zaporizhzhia nuclear plant
The International Atomic Energy Agency team at Ukraine’s Zaporizhzhia nuclear power plant (ZNPP) reported hearing gunfire near the site this morning while a drone hit the plant’s training center.
In a news release today, IAEA director general Rafael Mariano Grossi said this is the third drone to target the training center, located just outside the site perimeter, so far this year. He called for an immediate end to drones being flown over or near nuclear facilities.
Güngör Gündüz, İbrahım Uslu, Hasan H. Durmazuçar
Nuclear Technology | Volume 116 | Number 1 | October 1996 | Pages 78-90
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35313
Articles are hosted by Taylor and Francis Online.
Pure urania- and urania-gadolinia-containing fuel pellets were coated with boron nitride (BN) to improve the physical and neutronic properties of the fuel. The BN coating seems to have a technological advantage over zirconium-diboride coating. The BN is chemically inert, corrosion resistant, withstands rapid temperature changes, and has a high thermal conductivity. Since gadolinia fuel has low thermal conductivity, the gad-olinia content can be lowered in the fuel by coating it with BN. In fact, the existence of two burnable absorbers in a fuel introduces desired nuclear properties since gadolinia is a fast-burning and boron a slow-burning element. The BN was deposited on fuel from two different sources, (a) from the reaction of boron trichloride (BCl3) and ammonia (NH3) at 875 K and (b) from the decomposition of trimethylamine borate complex at 1200 K. The infrared and X-ray diffraction (XRD) spectra of BN from both precursors agreed with the available data in the literature. However BN powder from borane complex had a shifted XRD peak due to the presence of carbonaceous material in the structure. The BN powder-coated fuels were heated to 1400,1525, and 1600 K to sinter the BN. The examination under scanning electron microscope showed that grainy, rodshaped and layered BN coatings were achieved. Rodshaped structures were usually seen on gadolinia fuels. The increased thickness of coating favors the formation of a glassy looking layer. The BN from a borane complex seems to form a layered structure more easily than the BN from BCl3. The BN coated the surface of the fuels, and it did not penetrate into the fuels.