ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Jae Seung Song, Nam Zin Cho, Byung Ho Lee, Sung Quun Zee
Nuclear Technology | Volume 116 | Number 2 | November 1996 | Pages 137-145
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35295
Articles are hosted by Taylor and Francis Online.
In a core transient simulation, the initial condition of the simulation should be consistent with the real core state. The initial iodine and xenon distributions, which cannot be measured in the core, have significant effects on the transient with xenon dynamics of a pressurized water reactor. In simulating the transient starting from a nonequilibrium xenon state, accurate initialization of the nonequilibrium iodine and xenon distribution is essential to predict the core transient behavior. An initialization method that uses the iodine and xenon states to predict a core transient starting from a nonequilibrium xenon condition is developed through the analytical treatment of the relationship between power and the iodine and xenon distributions. An application of this method is provided by simulating a transient in the start-up test of Yonggwang Unit 3.