ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Robert E. Canaan, Dale E. Klein
Nuclear Technology | Volume 116 | Number 3 | December 1996 | Pages 306-318
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35286
Articles are hosted by Taylor and Francis Online.
Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent-fuel assembly during transport and some dry storage scenarios. The objective of this experimental study is to obtain convection correlations that can be used to easily incorporate convective effects into analytical models of horizontal spent-fuel systems and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of correlations of convective Nusselt number, which are defined in terms of the maximum and average assembly temperatures. The correlations have been corrected for radiation heat transfer using a numerical technique. The data suggest the presence of conduction and convection regimes, distinguished by a critical Rayleigh number. The correlation of the convection regime suggests turbulent flow conditions. Predictions of maximum assembly temperature using the presented correlations are compared with additional experimental data obtained in a horizontal enclosed rod bundle. Further comparisons are made with predictions from the widely used Wooten-Epstein equation and a recently developed theoretical approach based on an effective thermal conductivity model. Favorable results are obtained, especially for thermal conditions that favor natural convection, such as relatively low enclosure temperatures and abovestandard atmospheric pressure.