ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Greg J. Evans
Nuclear Technology | Volume 116 | Number 3 | December 1996 | Pages 293-305
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35285
Articles are hosted by Taylor and Francis Online.
Any release of radioiodine to the environment following a reactor accident depends to a large extent on its volatility within a containment structure. A common measure of iodine volatility is the water-air volumetric iodine partition coefficient (IPC), defined as the ratio of aqueous to airborne radioiodine concentrations. The impact of pH and total iodine concentration on volatility is evaluated through experiments and modeling to establish the relevant trends and improve the understanding of the underlying mechanisms. The model consists of kinetic expressions for 125 reactions. The IPC is evaluated experimentally by irradiating, at 0.25 kGy/h and 25°C, 131I-labeled CsI solutions ranging in concentration from 10−8 to 10−4 Mand in pH from 3 to 12. Both the experiments and the modeling indicate that under acidic conditions, the IPC for 10−6 M solutions is substantially higher than that for 10−5 M solutions. The predicted dependence of the IPC on pH for acidic 10−5 M solutions is in good agreement with that observed experimentally. However, substantial divergence occurred for more dilute solutions and for basic pH conditions. It is speculated that under these conditions, atomic iodine may contribute substantially to the overall volatility; adding atomic iodine volatility to the model is found to greatly improve the agreement.