ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Greg J. Evans
Nuclear Technology | Volume 116 | Number 3 | December 1996 | Pages 293-305
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35285
Articles are hosted by Taylor and Francis Online.
Any release of radioiodine to the environment following a reactor accident depends to a large extent on its volatility within a containment structure. A common measure of iodine volatility is the water-air volumetric iodine partition coefficient (IPC), defined as the ratio of aqueous to airborne radioiodine concentrations. The impact of pH and total iodine concentration on volatility is evaluated through experiments and modeling to establish the relevant trends and improve the understanding of the underlying mechanisms. The model consists of kinetic expressions for 125 reactions. The IPC is evaluated experimentally by irradiating, at 0.25 kGy/h and 25°C, 131I-labeled CsI solutions ranging in concentration from 10−8 to 10−4 Mand in pH from 3 to 12. Both the experiments and the modeling indicate that under acidic conditions, the IPC for 10−6 M solutions is substantially higher than that for 10−5 M solutions. The predicted dependence of the IPC on pH for acidic 10−5 M solutions is in good agreement with that observed experimentally. However, substantial divergence occurred for more dilute solutions and for basic pH conditions. It is speculated that under these conditions, atomic iodine may contribute substantially to the overall volatility; adding atomic iodine volatility to the model is found to greatly improve the agreement.