ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Takatoshi Hijikata, Masahiro Sakata, Hajime Miyashiro, Kensuke Kinoshita, Tatsuhiro Higashi, Tadaharu Tamai
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 114-121
Technical Note | Enrichment and Reprocessing System | doi.org/10.13182/NT96-A35280
Articles are hosted by Taylor and Francis Online.
High-level radioactive waste (HLW) from reprocessing (Purex) light water reactor spent fuel contains a small number of long-lived nuclides, mainly actinide elements, having half-lives of longer than one million years. If actinide elements could be separated from HLW and transmuted to short-lived nuclides, not only would waste management be much simpler but also public support for nuclear power generation might be easier to obtain. Central Research Institute of Electric Power Industry (CRIEPI), Japan, has proposed a pyrometallurgical process to separate actinides from HLW. When the solvent used in the Purex process is reclaimed by NaCO3 and NaOH, a waste stream containing sodium with fission products and actinides is produced also. The focus of CRIEPI is the disposal of HLW from both the Purex and the solvent rinse processes. In this concept, HLW is converted to chlorides, the actinides as molten chlorides are reduced by lithium metal and extracted into liquid cadmium, and finally, the actinides are purified by electrorefining. However, in the extraction of actinides into liquid cadmium, some of the rare earth elements are expected to be recovered together with the actinides because of their chemical similarity. Thus, it is necessary to obtain thermodynamic data of the actinides and rare earth elements in molten chlorides and liquid cadmium. The distribution coefficients for uranium, neptunium, and rare earth elements are determined in molten LiCl-KCl eutectic salt/liquid cadmium (LiCl-KCl system) and molten LiCl-NaCl salt/liquid cadmium (LiCl-NaCl system) systems. The equilibrium distribution of uranium, neptunium, and rare earth elements is also calculated based on the Gibbs energies of formation of the metal chlorides and their activity coefficients in molten salts and cadmium.