ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
ANS names 2026 Congressional Fellows
Kasper
Hayes
The American Nuclear Society has officially selected two of its members to serve as its 2026 Glenn T. Seaborg Congressional Science and Engineering Fellows. Alyssa Hayes and Benjamin Kasper will help the Society fulfill its strategic goal of enhancing nuclear policy by working in the halls of Congress, either in a congressional member’s personal office or with a committee, starting next January.
“The Congressional Fellowship program has put ANS in a unique position to provide significant technical assistance to Congress on nuclear science, energy, and technology, with great results,” said Congressional Fellowship Special Committee chair Harsh Desai, himself a former Congressional Fellow. “This once-in-a-lifetime professional development opportunity will allow them to learn the art of policymaking and potentially pursue it as part of their careers beyond the fellowship.”
Kostadin A. Dinov, Kazuo Kasahara
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 81-90
Technical Paper | Material | doi.org/10.13182/NT96-A35277
Articles are hosted by Taylor and Francis Online.
A theoretical approach is discussed that regards the kinetically determined pressurized water reactor (PWR) primary system as a set of thermodynamically defined metastable states that the related high-temperature aqueous system containing a combination of possible oxide phases (NixFe3−xO4, Fe3O4, and metallic nickel or NiO) and corresponding dissolution products may undergo under specified initial conditions. The study shows that stability zones of those metastable states, particularly M1 (NixFe3−xO4) and M3 [Ni(m) + NixFe3−xO4], cover practically the entire PWR operational range and depend on specific plant conditions and applied chemistry control. The thermodynamic analysis is predicated on the belief that defining the stability transition boundary between those states — found as a function of temperature, coolant pH, dissolved hydrogen (DH), and ferrite stoichiometry (x value) — is of primary importance for corrosion product behavior. Such a stability change influences both the particulate and ionic levels and the related activity transport and should be regarded as an important factor in optimizing PWR primary chemistry. The study offers an original approach to reassessing such important issues as thermodynamic data and the solubility of spinel oxides, the role of transport of particulates and soluble species, “optimum” pH and DH, and the chemistry effect on crud burst.