ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Gordana Vukovic, Michael L. Corradini
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 46-60
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35274
Articles are hosted by Taylor and Francis Online.
To investigate liquid-metal (fuel)/water (coolant) interactions, a vertical shock tube has been designed and constructed. A series of tests was conducted with gallium, indium, lead, and tin as the fuel materials at either low” (Tf ∼ 300°C) or “high” fuel temperature (Tf ∼ 600°C), with water at room temperature (low Tc) and in the range of Tc = 56 to 67°C (high Tc), and with driving pressures from 0.25 to 1.22 MPa. These materials were tested to determine their compatibility for potential use in liquid-metal divertor systems for fusion power plants. The increase in fuel and water temperature, as well as the increase of driving pressure, caused more energetic interactions to occur. High Tf tin and lead interactions, and high Tf and Tc gallium and indium interactions were the most energetic. Stronger interactions produced finer debris fragments. In high Tf gallium and indium interactions, small superficial oxidation was observed. For the first two pulses, larger ratios of compression- (compression of expansion vessel gas) to-expansion work correspond to the experiments with higher fuel and coolant temperatures. For the first pulse, only work ratio values of the most energetic experiments are larger than those of isothermal experiments. Consequently, for such experiments, the impulse values of second pulses are the largest. Higher values of the conversion ratio for the first pulse correspond to more energetic interactions. Even for the most energetic experiments, the conversion ratio is no higher than 1.2%, and no more than 15% (or a few millimetres-thick surface layer) of the initially loaded fuel participated in the interaction, assuming equal initial volumes of fuel and coolant.