ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Man-Sung Yim, Scott A. Simonson, Terry M. Sullivan
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 254-271
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35254
Articles are hosted by Taylor and Francis Online.
Atmospheric releases of I4C from a generic engineered low-level waste (LLW) disposal facility and its radiological impacts are investigated. A computer model that describes microbial gas generation and the transport has been developed and used to analyze the generation of l4C contaminated gases and subsequent migration in a facility. Models are based on a chemical kinetic description of aerobic and anaerobic decomposition of organic materials coupled with attending models of oxygen transport and consumption within waste containers in a facility. Effects of radiolysis on gas generation are addressed based on the estimated dose rate for class B and C wastes. Estimates predict that annual atmospheric release of l4C due to atmospheric pressure variations could range between ∼2.6 × 108 and 5.5 × 1011 Bq as a result of microbial gas generation based on a volume of 48 000 m3 LLW disposed in a facility. The associated dose to a maximally exposed individual is estimated to be dominated by ingestion pathway and strongly depends on the fraction of the food imported from an uncontaminated outside area. Dose rates are expected to be <0.04 mSv/yr, considering a reasonable distance between the facility and the exposed population. The depletion through airborne releases of l4C inventory that is available for transport through other pathways is not expected to be a significant issue.