ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
R. N. Nair, T. M. Krishnamoorthy
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 235-245
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35252
Articles are hosted by Taylor and Francis Online.
Mathematical models have been developed to predict the spatial and temporal profiles of radionuclide concentration in the near field and far field of a shallow land burial facility. The disposal facility considered is a reinforced concrete vault located 2.9 m above the water table. The source term is derived from leaching considerations based on diffusion-controlled kinetics for the transfer of radionuclides from the cylindrical waste form into the surrounding pore water of the backfill material. The concentration of radionuclides in the backfill at the bottom boundary of the vault is converted to a release rate into the near field using the outgoing water flux. The delay and decay during transit in the sand and soil layers are taken into account while evaluating the concentration and release at the near field-water table boundary. Using this release rate as the inlet flux, the concentration of radionuclides in the groundwater has been computed using a two-dimensional model. Results indicate that the vault facility with cement as the backfill material could contain almost all the radionuclides commonly encountered in the waste stream generated during the operation of nuclear power plants. However, the storage of some of the long-lived radionuclides produced in fuel reprocessing plants such as 79Se, 99Tc and 129I in the vault facility need to be regulated for restricting the resultant dose within the apportioned dose limit prescribed for the facility.