ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
R. N. Nair, T. M. Krishnamoorthy
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 235-245
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35252
Articles are hosted by Taylor and Francis Online.
Mathematical models have been developed to predict the spatial and temporal profiles of radionuclide concentration in the near field and far field of a shallow land burial facility. The disposal facility considered is a reinforced concrete vault located 2.9 m above the water table. The source term is derived from leaching considerations based on diffusion-controlled kinetics for the transfer of radionuclides from the cylindrical waste form into the surrounding pore water of the backfill material. The concentration of radionuclides in the backfill at the bottom boundary of the vault is converted to a release rate into the near field using the outgoing water flux. The delay and decay during transit in the sand and soil layers are taken into account while evaluating the concentration and release at the near field-water table boundary. Using this release rate as the inlet flux, the concentration of radionuclides in the groundwater has been computed using a two-dimensional model. Results indicate that the vault facility with cement as the backfill material could contain almost all the radionuclides commonly encountered in the waste stream generated during the operation of nuclear power plants. However, the storage of some of the long-lived radionuclides produced in fuel reprocessing plants such as 79Se, 99Tc and 129I in the vault facility need to be regulated for restricting the resultant dose within the apportioned dose limit prescribed for the facility.