ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Roberto Lenti, Luigi Mansani, Gianfranco Saiu
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 158-168
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35246
Articles are hosted by Taylor and Francis Online.
The new generation of evolutionary nuclear power plants, e.g., the Westinghouse AP600 and the General Electric simplified boiling water reactor, relies on a full reactor coolant system (RCS) depressurization to allow gravity injection from an in-containment tank and thereby assure long-term core cooling. Studies performed to support the licensing process and design of both evolutionary and innovative reactors have shown that cold water injection may, under particular plant conditions, induce a large plant depressurization. Preliminary studies have been performed to support the design of a passive injection and depressurization system (PIDS) based on the idea of depressurizing the RCS by mixing cold water with the RCS hot water and inducing steam condensation in the primary system. The analyses, performed with the RELAP5/ MOD3 computer code, show the response of a typical midsize pressurized water reactor plant [two loops, 600 MW(electric)] equipped with the PIDS. Different RCS injection locations including pressurizer, vessel upper head, and hot leg, and actuation at different residual reactor coolant masses have been investigated. Several factors, including RCS mixing, RCS residual mass at PIDS actuation, PIDS injection flow rate, and steam generator conditions, have been shown to affect the plant depressurization. The PIDS performance has also been verified against the following reference severe accident scenarios: (a) complete station blackout event, and (b) a small-break loss-of-coolant accident and concomitant station blackout event. Preliminary experimental activities to support the PIDS concept have already been performed. Additional experimental activities, including integrated system tests, have been planned to support system development and computer code validation.