ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Floyd E. Dunn
Nuclear Technology | Volume 114 | Number 2 | May 1996 | Pages 147-157
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35245
Articles are hosted by Taylor and Francis Online.
As part of a program to obtain realistic, as opposed to excessively conservative, analysis of reactor transients, a multiple-pin treatment for the analysis of intrasubassembly thermal hydraulics has been included in the SASSYS-1 liquid-metal reactor systems analysis code. This new treatment has made possible a whole new level of verification for the code. The code can now predict the steady-state and transient responses of individual thermocouples within instrumented subassemblies in a reactor rather than just predicting average temperatures for a subassembly. Very good agreement has been achieved between code predictions and the experimental measurements of steady-state and transient temperatures and flow rates in the shutdown heat removal tests in the Experimental Breeder Reactor II (EBR-Il). Detailed multiple-pin calculations for blanket subassemblies in the EBR-II demonstrate that the actual steady-state and transient peak temperatures in these subassemblies are significantly lower than those that would be calculated by simpler models.