ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
John C. Wagner, Alireza Haghighat, Bojan G. Petrovic
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 373-398
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35241
Articles are hosted by Taylor and Francis Online.
The application of Monte Carlo methods for reactor pressure vessel (RPV) neutron fluence calculations is examined. As many commercial nuclear light water reactors approach the end of their design lifetime, it is of great consequence that reactor operators and regulators be able to characterize the structural integrity of the RPV accurately for financial reasons, as well as safety reasons, due to the possibility of plant life extensions. The Monte Carlo method, which offers explicit three-dimensional geometric representation and continuous energy and angular simulation, is well suited for this task. A model of the Three Mile Island unit 1 reactor is presented for determination of RPV fluence; Monte Carlo (MCNP) and deterministic (DORT) results are compared for this application; and numerous issues related to performing these calculations are examined. Synthesized three-dimensional deterministic models are observed to produce results that are comparable to those of Monte Carlo methods, provided the two methods utilize the same cross-section libraries. Continuous energy Monte Carlo methods are shown to predict more (15 to 20%) high-energy neutrons in the RPV than deterministic methods.