ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
Constantine P. Tzanos
Nuclear Technology | Volume 147 | Number 2 | August 2004 | Pages 181-190
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3524
Articles are hosted by Taylor and Francis Online.
Benchmark experiments simulating flows in a pressurized water reactor rod bundle were analyzed to evaluate the performance of a state-of-the-art computational fluid dynamics (CFD) code. For the simulation of turbulence a number of standard k-[curly epsilon] models were used. Away from components that cause significant flow deflections, the difference between mean velocity predictions and measurements is within the experimental error. Near such components there is significant discrepancy between velocity predictions and measurements. Even in rod bundles without flow deflectors, the turbulence predictions of standard k-[curly epsilon] models show significant discrepancy with measurements. These discrepancies are greater near components that cause flow deflections. Turbulence generated by vanes on spacer grids significantly enhances thermal mixing. To improve the fidelity of CFD simulations of flows in reactor rod bundles, the development of Reynolds averaging of the Navier-Stokes equations turbulence models based on such flows is needed.