ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Mohamed S. El-Genk, Cheng Gao
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 351-364
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A35239
Articles are hosted by Taylor and Francis Online.
Quenching experiments were performed to investigate the effects of radius of curvature and edge angle on pool boiling from downward-facing surfaces in saturated water. The experiments employed two, 20-mm-thick copper test sections that had the same diameter (75 mm) but different surface radii (148 and 218.5 mm) and vapor release (or edge) angles (14.68 and 9.88 deg). The effect of surface area on pool boiling was determined by comparing the present results with the results for a copper section that was of the same thickness but had a surface radius of 148 mm and was less than one-half the surface area. The maximum heat flux (qMHF) was highest at the lowermost position and decreased with increased local inclination on the surface. Both local and surface average qMHF were representative of quasi-steady-state critical heat flux. The high edge angle reduced vapor accumulation, which enhanced surface coolability and shortened its quenching time. For an edge angle of 9.88 deg, increasing the surface area (or surface radius) insignificantly affected the local qMHF near the edge of the copper section but lowered it everywhere else by ∼10%. For the same surface area, the larger edge angle (or smaller surface radius) increased qMHF by as much as 40%.