ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
ANS designates Armour Research Foundation Reactor as Nuclear Historic Landmark
The American Nuclear Society presented the Illinois Institute of Technology with a plaque last week to officially designate the Armour Research Foundation Reactor a Nuclear Historic Landmark, following the Society’s decision to confer the status onto the reactor in September 2024.
Takaaki Mochida, Mitsunari Nakamura, Jun-Ichi Yamashita, Hiromi Maruyama, Sakae Muto, Shigeru Kasai
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 308-317
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35235
Articles are hosted by Taylor and Francis Online.
The multienrichment boiling water reactor (BWR) initial core design was first applied to the Kashiwazaki-Kariwa Nuclear Power Station Unit 5 [1100-MW(electric) BWR] in Japan. This core is designed to improve fuel discharge exposure, capacity factors, and operability. The design study shows that three types of fuel bundles with different enrichments are suitable to achieve the design targets. Three bundle enrichments are selected to simulate each of the following: fresh bundles, once-burned bundles, and twice-burned bundles in the reload core. Although the heterogeneity of multienrichment design increases the complexity of the design analysis, both the initial criticality test and the moderator temperature coefficient measurement showed good agreement with our prediction. Subsequent full-power operation verified the expected core performance. Average discharge exposure for the total initial fuel is ∼10% larger than that for the conventional single-enrichment BWR initial fuel with reinsertion of discharged fuel at the end of the first cycle. These experiences verified the effectiveness of a multienrichment initial core for the improvement of fuel utilization, capacity factors, and operability