ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Akira Endou
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 285-291
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35233
Articles are hosted by Taylor and Francis Online.
In liquid-metal-cooled fast breeder reactors (LMFBRs), electromagnetic flowmeters (EMFs) have been extensively used to measure the coolant flow rate. Because the coolant flow rate is one of the most important parameters, a high accuracy and a fast response are required for the flow rate measurement. However, it was thought that the response might become slower when the pipe diameter of the EMF was increased. Therefore, a quantitative evaluation of the response was needed. To evaluate the response time of EMFs, an equation of the transient response was derived based on the realistic approximation that the EMF pipe is made of nonconductive material. The response is expressed as a function of the reciprocal of the square of the pipe radius a and of the length L of the external magnetic field along the pipe axis. However, when the aspect ratio L/2a is larger than two, the length of the external magnetic field has an almost insignificant effect on the response, and the response time increases with increasing a2. The transient response can be calculated with an uncertainty of less than a few percent. A first-order approximation of the derived equation is given by the first lag term with the time constant of µσa2/ 3.832 with permeability µ and conductivity a of the coolant. Even though the EMF has a diameter as large as 30 in., the response time is 45 ms and sufficiently fast compared with other sensors used in LMFBRs.