ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Byung-Soo Lee, William A. Jester
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 122-134
Technical Paper | Material | doi.org/10.13182/NT96-A35228
Articles are hosted by Taylor and Francis Online.
Mechanisms of radioiodine deposition from sample air containing both gaseous and particulate radioiodine in reactor sample lines are studied, and experimental methods are developed. A short half-lived radioiodine tracer, 128I (t1/2 = 25 min), is used in the chemical forms of molecular iodine and methyl iodide. An effort is made to investigate the type of particles for particulate iodine. Of the various types of particles tested, only tobacco smoke particles have a sufficiently high iodination rate to be used in these studies. The 609.6-cm (20-ft)-long sample lines of Types 316 and 304 stainless steel tube (2.29 cm i.d.) were tested for the sample flow rates of 28.3 ℓ/min (1 ft3/min) and 56.6 ℓ/min (2 ft3/min). In-tube measurements using a calibrated thin-walled Geiger tube are conducted to determine the penetration factor and space-dependent deposition velocity profile of radioiodine. Methyl iodide is not reactive for either the tube surfaces or aerosol particles. The overall deposition velocity of the mixture of the smoke particles and molecular iodine is higher than that of molecular iodine alone for similar sampling conditions. It is concluded that the high deposition rate of radioiodine in the sample air mixed with smoke particles and molecular iodine is caused by the different sample line surfaces that are contaminated with smoke particles.