ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
H. P. Nawada, N. P. Bhat, G. R. Balasubramanian
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 97-110
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT96-A35226
Articles are hosted by Taylor and Francis Online.
To compare and evaluate various fuel cycle options for a 500-MW(electric) fast breeder reactor, the electrorefining process has been examined for reprocessing spent fuel. Making use of an improved thermochemical model, optimum process conditions for electrorefining have been worked out. These conditions are the following: capacity of the electrorefining cell, number of cells, batch size, feed adjustments, sequential operations for recovery of uranium and co-recovery of uranium and plutonium, number of cycles, and timeframe to meet the refueling schedule. The spent fuel is envisaged to undergo reprocessing in three campaigns: (a) the inner core campaign, (b) the outer core campaign, and (c) the blanket and the leftover campaign. Feed adjustments are done by mixing either the spent inner core or the outer core fuels with the blankets. Three product streams with required fuel composition for direct refabrication of the inner core, the outer core, and the blanket fuel subassemblies, respectively, are obtained by certain sequential electrorefining operations. These calculations made for a mixed-oxide fuel core can be easily extended to the metallic core.