ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Theron D. Marshall, Robert W. Hockenbury, John A. Honey, Lee C. CadWallader
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 84-96
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35225
Articles are hosted by Taylor and Francis Online.
Probabilistic risk assessment methodology is applied to generate an evaluation of the relative likelihood of safe recovery following selected pressurized water reactor (PWR) design basis accidents for a Russian V213 nuclear power reactor. U.S.-designed PWRs similar to the V213 are used for reference and comparison. This V213 risk assessment is based on comparison analyses of the following aspects: accident progression event tree success paths for typical PWR accident initiating events, safety aspects in reactor design, and perceived performance of reactor safety systems. The four initiating events considered here were taken from a U.S. Nuclear Regulatory Commission summary report on severe accident risk: loss of offsite power with station blackout, large-break loss-of-coolant accident (LOCA), medium-break LOCA, arid small-break LOCA. The success probabilities for the V213 reaching a non-core-damage state after the onset of the selected initiating events are calculated for two scenarios: (a) using actual component reliability datafrom U. S. PWRs and (b) assuming common component reliability data. U.S. PWR component reliability data are used because of the unavailability of such data for the V213 at the time of the analyses. While the use of U.S. PWR data in this risk assessment of the V213 does strongly infer V213 comparability to U.S. plants, the risk assessment using common component reliability does not have such a stringent limitation and is thus a separate scoping assessment of the V213 engineered safety systems. The results of the analyses suggest that the V213 has certain design features that significantly improve the reactor’s safety margin for the selected initiating events and that the V213 design has a relative risk of core damage for selected initiating events that is at least comparable to U.S. PWRs. It is important to realize that these analyses are of a scoping nature and may be significantly influenced by important risk factors such as V213 operator training, quality control, and maintenance procedures. Additionally, the analyses make no implications as to the effects of the selected initiating events on the health and safety of the public.