ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Canada clears Darlington to produce Lu-177 and Y-90
The Canadian Nuclear Safety Commission has amended Ontario Power Generation’s power reactor operating license for Darlington nuclear power plant to authorize the production of the medical radioisotopes lutetium-177 and yttrium-90.
Nikolai B. Mikheev, Sergei A. Kulyukhin, Alla N. Kamenskaya, Igor’ A. Rumer
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 77-83
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35224
Articles are hosted by Taylor and Francis Online.
Increasing the safety of nuclear power plants is a problem of the utmost importance in the nuclear energy industry. Particular attention is given to severe accidents at nuclear reactors. Although the probability of these accidents is low (<10−5), their consequences are the most disastrous. Severe accidents result in the release of tens of thousands of curies of radioactive products into the area under the containment. Modern protective systems for the localization of radioactive aerosols and volatile radionuclides are based mainly on the filtration of gas flow, using various solid and liquid sorbents. The main principle of these filters is based on the precipitation of suspended particles on any surface (grids, liquid drops, or film, fiber, and electrode surfaces). In these processes, physical phenomena such as gravitation, inertia, diffusion, electricity, magnetism, and supersonics are used. A disadvantage of the available systems is that they may not trap radioaerosols present in the vapor-gas mixture in the form of finely dispersed (much smaller than 0.1 µm) hydrophobic particles. A new concept of protection from radioaerosols and volatile radionuclides has been suggested. A basically new method of the localization of radioactive aerosols and volatile radionuclides is based on the physicochemical process occurring in the gas phase. The proposed concept of protection from radioaerosols and volatile fission products uses unconventional approaches based not on the filtration of vapor-gas flow but on the extraction of radioaerosols and radioiodine from them by the formation of mixed micelles with manufactured hydrophilic aerosols, such as MoO3 and NH4CI-(NH4)2SO3, and the cocrystallization of ionic iodine with them. The new concept may be used for protection from radioaerosols at various types of nuclear reactors.