ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Fusion office bill introduced in line with DOE reorganization plan
Cornyn
Padilla
Sens. Alex Padilla (D., Calif.) and John Cornyn (R., Texas) have introduced bipartisan legislation to formally establish the Office of Fusion at the Department of Energy. This move seeks to codify one of the many changes put forward by the recent internal reorganization plan for offices at the DOE.
Companion legislation has been introduced in the House of Representatives by Reps. Don Beyer (D., Va.) and Jay Obernolte (R., Calif.), who are cochairs of the House Fusion Energy Caucus.
Details: According to Obernolte, “Congress must provide clear direction and a coordinated federal strategy to move fusion from the lab to the grid, and this legislation does exactly that.”
Matthias Heitsch
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 68-76
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35223
Articles are hosted by Taylor and Francis Online.
Hydrogen release and combustion during severe accident scenarios can impose considerable loads on the containment structure and internal components. Either random sources (electric equipment) or spark igniters installed in the numerous containment rooms may initiate more or less accelerated deflagrations. To avoid damaging consequences, different concepts are available, which range from diluting or making the containment atmosphere inert to the use of igniters and catalytic recombiners. Spark igniters are used to burn the atmospheric hydrogen deliberately as early as possible, which means whenever it becomes flammable. A hydrogen deflagration model has been developed that is meant to estimate the combustion phenomena on a mechanistic basis as part of an integrated containment code to calculate severe accident sequences in the containment. It provides temperature and pressure loads resulting from deflagrations. The deflagration model is verified by applying it to specially designed deflagration experiments that can describe the type of premixed combustion to be found in nuclear power plant containments. The results demonstrate the potential of the model to describe the dynamics of a deflagration quite well. Due to deficiencies in understanding the nature of flame front growth, appropriate burning area stretching functions are derived from available experiments.