ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Mark W. Wendel, David G. Morris, Paul T. Williams
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 51-67
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35222
Articles are hosted by Taylor and Francis Online.
Loss-of-coolant accident analyses have been completed for the High-Flux Isotope Reactor safety analysis report. More than 100 simulations have been performed using the RELAP5/MOD2.5 computer program. The RELAP5 input model used for the simulations is quite detailed, including 17 parallel channels in the core region, the three active heat exchanger cells, the pressurizing system, and the secondary cooling system. Special models are developed to represent the effects of shrinkage in the primary coolant pressure boundary and cavitation of the primary coolant pumps. Six locations in the primary coolant system are selected as pipe break sites to determine the worst-case scenario. At each of the locations, simulations are completed for a range of break diameters. The reactor is assumed to survive the transient as long as the hot-spot heat flux remains below the flow excursion limit. In addition to the baseline simulations, extensive parametric simulations are conducted to ensure that the modeling assumptions used are conservative. For a break diameter of 5.1 cm at any of the six locations in the system, the hot-spot heat flux remains beneath this limit, and furthermore, no boiling occurs in the fuel region. A summary table for all results is presented, and results are discussed in detail for the worst-case 5.1-cm break scenario.