ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Supreme Court rules against Texas in interim storage case
The Supreme Court voted 6–3 against Texas and a group of landowners today in a case involving the Nuclear Regulatory Commission’s licensing of a consolidated interim storage facility for spent nuclear fuel, reversing a decision by the 5th Circuit Court of Appeals to grant the state and landowners Fasken Land and Minerals (Fasken) standing to challenge the license.
Bernard André, Gérard Ducros, Jean Pierre Lévêque, Morris F. Osborne, Richard A. Lorenz, Denis Maro
Nuclear Technology | Volume 114 | Number 1 | April 1996 | Pages 23-50
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35221
Articles are hosted by Taylor and Francis Online.
During the 1970s, reactor safety authorities developed increasing interest in methods for accurately predicting the extent of hazards associated with severe accidents in light water reactors (LWRs). In response to these concerns, out-of-pile experimental projects were initiated by the U.S. Nuclear Regulatory Commission and the French Nuclear Protection and Safety Institute, at Oak Ridge National Laboratory (ORNL) and the Commissariat à l’Energie Atomique (CEA), respectively. Both experimental efforts were designed for source term characterization of the fission products (FPs) released from LWR fuel samples under test conditions representative of severe accidents, i.e., in oxidizing or reducing atmospheres at temperatures up to 2700 K (at ORNL) and 2570 K (at CEA). The experimental devices, procedures, and parameters are described. The combined database of available results is summarized and related to experimental conditions. Using Booth diffusion theory, diffusion coefficients of the FPs were calculated, and their evolution with temperatures in the 1070 to 2700 K range were plotted. The results show the good agreement between the independently determined ORNL and CEA FP diffusion coefficient values. By plotting the data in Arrhenius fashion, it has been possible to do the following: