ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Paul A. Demkowicz, James L. Jerden, Jr., James C. Cunnane, Noriko Shibuya, Ronald Baney, James Tulenko
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 157-170
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT04-A3522
Articles are hosted by Taylor and Francis Online.
The aqueous dissolution of irradiated and unirradiated uranium-thorium dioxide, (U,Th)O2, fuel pellets in Yucca Mountain well water has been investigated. Whole and crushed pellets were reacted at 25 and 90°C for periods of up to 195 days. The fuel dissolution was measured by analyzing the concentrations of soluble uranium, thorium, and important fission products (137Cs, 99Tc, 237Np, 239Pu, 240Pu, and 241Am) in the well water. The surface-area-normalized fractional uranium release rates for unirradiated crushed uranium dioxide (UO2) pellets were 10 to 40 times higher than the values for (U,Th)O2 fuel. Similarly, the dissolution rates of irradiated (U,Th)O2 pellets with compositions ranging from 2.0 to 5.2% UO2 were at least two orders of magnitude lower than reported literature values for pure UO2. These results demonstrate an advantage of (U,Th)O2 over UO2 in terms of matrix dissolution in groundwater and suggest that (U,Th)O2 fuel is a more stable long-term waste form than conventional UO2 fuel.