ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Paolo F. Fantoni, Alessandro Mazzola
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 368-374
Technical Paper | Reactor Operation | doi.org/10.13182/NT96-A35216
Articles are hosted by Taylor and Francis Online.
The possibility of using a neural network to validate process signals during normal and abnormal plant conditions is explored. In boiling water reactor plants, signal validation is used to generate reliable thermal limits calculation and to supply reliable inputs to other computerized systems that support the operator during accident scenarios. The way that autoassociative neural networks can promptly detect faulty process signal measurements and produce a best estimate of the actual process values even in multifailure situations is shown. A method was developed to train the network for multiple sensor-failure detection, based on a random failure simulation algorithm. Noise was artificially added to the input to evaluate the network’s ability to respond in a very low signal-to-noise ratio environment. Training and test data sets were simulated by the realtime transient simulator code APROS.