ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Chien Chung, Chin-Hsuen Tsai
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 346-353
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35214
Articles are hosted by Taylor and Francis Online.
A method to monitor in situ the dose rate from the gaseous radionuclide 41 Ar is developed using a portable gamma-ray spectrometer. A high-purity germanium detector with a sensitivity of 0.358 nSv/h per count per minute is used to calibrate 1294-keV gamma rays emitted from radioactive 41 Ar. Field measurements are conducted both inside and outside of the containment of a nuclear reactor during full-power operation, and iso-dose rate contour curves are mapped. The in situ measurement can be readily performed at various locations near a nuclear reactor with a 14-kg portable spectrometric unit. The detection limit for a 1-h counting period is as low as 0.35 nSv/h for the gaseous 41 Ar. One can use the method and field measurements developed in this research to quantitatively determine the gaseous fission products of krypton and xenon dispersed from a nuclear power plant.