ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Heemoon Kim, Kwangheon Park, Bong Goo Kim, Yong Sun Choo, Keon Sik Kim, Kun Woo Song, Kwon Pyo Hong, Young Hwan Kang, Kwangil Ho
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 149-156
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT04-A3521
Articles are hosted by Taylor and Francis Online.
Postirradiation annealing tests were performed to obtain the 133Xe diffusion coefficients in uranium dioxide (UO2) and mixed thorium-uranium dioxide [(Th-U)O2] fuels. Specimens were a single-grained UO2, a polycrystalline UO2, and a polycrystalline (Th-U)O2. The (Th-U)O2 specimen was a mixture of 35% ThO2 and 65% UO2. Each 300-mg specimen was irradiated to a burnup of 0.1 MWd/t U. Postirradiation annealing tests were performed at 1400, 1500, and 1600°C, continuously. The xenon diffusion coefficients for the nearly stoichiometric single-grained UO2 agree well with the data of others. The xenon diffusion coefficients in the polycrystalline (Th-U)O2 are approximately one order lower than those in the polycrystalline UO2. The xenon diffusion coefficient in the (Th-U)O2 increases with the increasing oxygen potential of the ambient gas.