ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
C. P. Tzanos, A. Hunsbedt
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 249-267
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35206
Articles are hosted by Taylor and Francis Online.
The performance of the reactor vessel auxiliary cooling system (RVACS) of a liquid-metal reactor is a function of the pressure difference between the cooling air inlet and outlet, of the air density variation along the flow path, and of the pressure loss and heat transfer characteristics of this path. The pressure difference between the air inlet and outlet as well as the RVACS inlet temperature may be affected by wind speed and direction. The objective of this work was to analyze the effects of wind on the performance of the RVACS of an advanced liquid metal reactor design based on the PRISM concept. Each stack of the reference RVACS design had two air inlets. The analysis showed that one particular wind direction had the most adverse impact on the RVACS performance. For this direction, in a two-inlet stack design, the net effect of a 27 m/s (60 mph) wind on the RVACS air flow would be a reduction of ∼15%; while in a four-inlet design, the net effect would be nearly zero. A 15% reduction in the RVACS airflow would increase the peak cladding temperature by ∼15°C. In reality, however, the wind direction fluctuates around an average direction, and the most adverse wind effect should be <15°C. The temperature at the inlet of the downwind stacks is affected by the outflow of the upwind stacks, but the effect is small. For an air temperature change of 164°C along the RVACS flow path, the maximum inlet temperature rise is ∼5°C. This would increase the peak cladding temperature by ∼1°C.