ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Urenco USA marks enrichment milestones
Urenco USA has highlighted the completion of a successful year of advancing nuclear fuel supply in the U.S. by achieving two new milestones this month: The first production of enriched uranium above 5 percent uranium-235, and the startup of the company’s next cascade of centrifuges as part of its capacity installation program.
C. P. Tzanos, A. Hunsbedt
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 249-267
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35206
Articles are hosted by Taylor and Francis Online.
The performance of the reactor vessel auxiliary cooling system (RVACS) of a liquid-metal reactor is a function of the pressure difference between the cooling air inlet and outlet, of the air density variation along the flow path, and of the pressure loss and heat transfer characteristics of this path. The pressure difference between the air inlet and outlet as well as the RVACS inlet temperature may be affected by wind speed and direction. The objective of this work was to analyze the effects of wind on the performance of the RVACS of an advanced liquid metal reactor design based on the PRISM concept. Each stack of the reference RVACS design had two air inlets. The analysis showed that one particular wind direction had the most adverse impact on the RVACS performance. For this direction, in a two-inlet stack design, the net effect of a 27 m/s (60 mph) wind on the RVACS air flow would be a reduction of ∼15%; while in a four-inlet design, the net effect would be nearly zero. A 15% reduction in the RVACS airflow would increase the peak cladding temperature by ∼15°C. In reality, however, the wind direction fluctuates around an average direction, and the most adverse wind effect should be <15°C. The temperature at the inlet of the downwind stacks is affected by the outflow of the upwind stacks, but the effect is small. For an air temperature change of 164°C along the RVACS flow path, the maximum inlet temperature rise is ∼5°C. This would increase the peak cladding temperature by ∼1°C.