ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
M. Sakuma, R. Kozma, M. Kitamura
Nuclear Technology | Volume 113 | Number 1 | January 1996 | Pages 86-99
Technical Paper | Reactor Operation | doi.org/10.13182/NT96-A35201
Articles are hosted by Taylor and Francis Online.
Fractal analysis is applied in a variety of research fields to characterize nonstationary data. Here, fractal analysis is used as a tool of characterization in time series. The fractal dimension is calculated by Higuchi’s method, and the effect of small data size on accuracy is studied in detail. Three types of fractal-based anomaly indicators are adopted: (a) the fractal dimension, (b) the error of the fractal dimension, and (c) the chisquare value of the linear fitting of the fractal curve in the wave number domain. Fractal features of time series can be characterized by introducing these three measures. The proposed method is applied to various simulated fractal time series with ramp, random, and periodic noise anomalies and also to neutron detector signals acquired in a nuclear reactor. Fractal characterization can successfully supplement conventional signal analysis methods especially if nonstationary and non-Gaussian features of the signal become important.