ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Daniel B. Bullen
Nuclear Technology | Volume 113 | Number 1 | January 1996 | Pages 29-45
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT96-A35197
Articles are hosted by Taylor and Francis Online.
A mathematical model to predict the cumulative failure distribution for the containment barrier system (CBS) employed in a deep geologic disposal facility is presented as a function of near-field environmental conditions expected at the Yucca Mountain site in Nevada. The model can address the effects of container design, areal power density, and dominant heat transfer mode on the cumulative container failure distribution. This model has been employed to describe the performance of the CBS as one part of a risk-based performance assessment of the Yucca Mountain site. The model employs Weibull and exponential distributions to describe container failures. Parameter values employed in the model are based on simple, time-dependent, mechanistic models and relevant corrosion data, which describe failure of individual components of the CBS as a function of environmental conditions. The relative importance of container design with respect to predicted container performance is demonstrated through comparison of the results for three candidate container designs. The best container performance was noted for the conduction-dominant heat transfer mode at an areal power density of 114 kW/acre for all container designs. Calculations for the titanium-clad, Alloy C-4 container design suggest that significant improvements in container performance may be achieved through the use of very high-performance alloys. The performance of the multipurpose container (MPC) design at the high areal power density (114 k W/acre) was only slightly better than the Alloy 825, single-barrier design. This was due to the potential deleterious effect of high-temperature oxidation on the carbon steel outer barrier of the MPC design.