ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Byung-Soo Lee, William A. Jester
Nuclear Technology | Volume 113 | Number 2 | February 1996 | Pages 221-231
Technical Paper | Reactor Operation | doi.org/10.13182/NT96-A35190
Articles are hosted by Taylor and Francis Online.
Experimental methods are developed, and the mechanisms of airborne radioiodine deposition in reactor sample lines are studied. A short-half-lived radioiodine tracer, 128I (t1/2 = 25 min), is used in the chemical forms of molecular iodine and methyl iodide. In-tube measurements using a calibrated Geiger tube are conducted to determine the space-dependent iodine deposition rate and the penetration factor. The reproducibility of average deposition velocity and thus penetration factors for a given sample line under similar experimental conditions show good improvement over those of previous researchers. For the three stainless steel tubes tested under comparable conditions, the deposition velocities are tube specific, with the difference in deposition velocities being a factor of >10. The most important factors that determine the I2 deposition rate are organic contamination, sample air relative humidity, and sample line inside surface structures. Heat tracing and passivation procedures are found to be effective in reducing I2 deposition rate. The CdI2 filter in the iodine sampler system showed a retention efficiency of ∼81% under the test conditions rather than the 98% reported by the manufacturer. In conclusion, in-plant testing is necessary to determine the deposition losses of airborne radioiodine in the existing plant sample lines. The sample lines should be cleaned at regular intervals and heat traced to minimize the deposition losses. For very long sample lines, passivation procedures may be required.