ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Almir Fernandes, Sudarshan K. Loyalka
Nuclear Technology | Volume 113 | Number 2 | February 1996 | Pages 155-166
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35185
Articles are hosted by Taylor and Francis Online.
The CONTAIN code is an integrated code for predicting the containment behavior (chemical, physical, and radiological) in a severe accident. It models the thermal hydraulics as well as the aerosol and fission products behavior inside the containment. There are four aerosol deposition mechanisms modeled in the code: settling, diffusion to surfaces, thermophoresis, and diffusiophoresis. In general, the settling and diffusion are the most important. A comparison of the CONTAIN deposition rate expression with a general and more accurate rate expression, however, shows that for most geometries, the code expression overestimates the deposition of small particles, mainly because of an inadequate assumption regarding the dependence of the thickness of the boundary layer on particle size. For some specific geometries, the expression can also overestimate deposition of large particles. The general and more accurate expression is implemented in the CONTAIN code for the cubic and spherical geometries for a test problem. The original and the modified versions of the CONTAIN code are found to yield different results for the suspended aerosol mass. The differences depend on other aerosol processes such as coagulation and also on geometry.