ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
NRC approves V.C. Summer’s second license renewal
Dominion Energy’s V.C. Summer nuclear power plant, in Jenkinsville, S.C., has been authorized to operate for 80 years, until August 2062, following the renewal of its operating license by the Nuclear Regulatory Commission for a second time.
Almir Fernandes, Sudarshan K. Loyalka
Nuclear Technology | Volume 113 | Number 2 | February 1996 | Pages 155-166
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35185
Articles are hosted by Taylor and Francis Online.
The CONTAIN code is an integrated code for predicting the containment behavior (chemical, physical, and radiological) in a severe accident. It models the thermal hydraulics as well as the aerosol and fission products behavior inside the containment. There are four aerosol deposition mechanisms modeled in the code: settling, diffusion to surfaces, thermophoresis, and diffusiophoresis. In general, the settling and diffusion are the most important. A comparison of the CONTAIN deposition rate expression with a general and more accurate rate expression, however, shows that for most geometries, the code expression overestimates the deposition of small particles, mainly because of an inadequate assumption regarding the dependence of the thickness of the boundary layer on particle size. For some specific geometries, the expression can also overestimate deposition of large particles. The general and more accurate expression is implemented in the CONTAIN code for the cubic and spherical geometries for a test problem. The original and the modified versions of the CONTAIN code are found to yield different results for the suspended aerosol mass. The differences depend on other aerosol processes such as coagulation and also on geometry.