ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NEI chief executive highlights “unlimited potential” for nuclear in state of the industry address
Korsnick
In the Nuclear Energy Institute’s annual State of the Nuclear Energy Industry report, NEI president and CEO and Maria Korsnick expressed optimism about the nuclear industry and she issued a call to action.
Her address was part of NEI’s Nuclear Energy Policy forum. The forum, being held in Washington, D.C., on May 20 and May 21, brings together industry leaders, policy stakeholders, and clean energy experts to discuss nuclear advocacy. Korsnick’s remarks focused on the private capital flowing into the industry, progress on regulatory reform and new nuclear technology, and how the U.S. is trying to take the lead on the global nuclear stage.
“We are here at an unprecedented time in our industry history,” Korsnick said. “I’m proud to say that the nuclear industry has a future of unlimited potential.”
Jae Ho Yang, Ki Won Kang, Kun Woo Song, Chan Bock Lee, Youn Ho Jung
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 113-119
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT04-A3518
Articles are hosted by Taylor and Francis Online.
Techniques to fabricate thorium-uranium dioxide fuel [(Th,U)O2] have been developed, and the thermal conductivity of (Th,U)O2 pellets has been measured. Mixtures of thorium dioxide (ThO2) and uranium dioxide (UO2) powders were successfully wet-milled, compacted, and sintered at 1700°C to fabricate (Th,U)O2 pellets. The wet-milling process results in a fuel density of 96 to 98% of theoretical density and a uniform distribution of the uranium and thorium in the (Th,U)O2 pellet. The laser flash method was used to measure the thermal diffusivity of the ThO2 and (Th,U)O2 pellets, and the thermal conductivities of (Th0.655U0.345)O2 and (Th0.355U0.645)O2 fuel were found to be lower than that of ThO2 or UO2 fuel. The degradation of the thermal conductivity by the UO2 substitution is great at low temperatures but decreases as the temperature increases.