ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
James H. Stuhmiller, Paul J. Masiello, Govinda S. Srikantiah, Lance J. Agee
Nuclear Technology | Volume 112 | Number 3 | December 1995 | Pages 346-354
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35160
Articles are hosted by Taylor and Francis Online.
The estimation of critical heat flux (CHF) in nuclear reactors is based largely on empirical relations that have aphysteal limiting conditions, a narrow range of applicability, and are inadequate for transient conditions. It is generally agreed that a more physically based approach is needed. Evidence is presented supporting the importance of boiling-induced fluid flow on the CHF process. Computational fluid dynamics (CFD) is used to model the microscale, transient dynamics of a vapor bubble growing in a subcooled liquid, resulting in qualitative reproduction of vapor blanket growth and CHF. The same CFD techniques are used to evaluate the macroscale thermal diffusion caused by spacers, resulting in qualitative reproduction of previous empirical results. This work forms the basis for a systematic investigation of CHF that could result in improved and less costly procedures for nuclear fuel design.