ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright denies reports of DOE plans to axe Hanford’s WTP
Energy Secretary Chris Wright issued a statement on September 9 denying reports that the Department of Energy plans to terminate the Waste Isolation Pilot Plant (WTP) at the Hanford Site in Washington state.
Hiroshi Takahashi
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 149-162
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT95-A35153
Articles are hosted by Taylor and Francis Online.
Transmutation of minor actinides and long-lived fission products using a proton accelerator has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. Study was done on the relation between the energy requirements and the multiplication factor k of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the longlived fission products without consuming much fissile material, the transmutor reactor must have a good neutron economy, which can be obtained by using a transmutor operated by a proton accelerator. Consideration is given to the use of minor actinides to improve neutronic characteristics, such as achieving a long fuel burnup rather than simply transmuting this valuable material.