ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Young A. Choi, Madeline Anne Feltus
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 115-121
Technical Note | Reactor Operation | doi.org/10.13182/NT95-A35150
Articles are hosted by Taylor and Francis Online.
Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system functionbased, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing (as required by Section XI of the American Society of Mechanical Engineers Code) was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., highpressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/ LPCI)] were gathered from Philadelphia Electric Company’s Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PMperiod failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates. A significant decrease in CDF was found when comparing the plant-specific data with the generic data. Only a small difference in CDF was found between plant-specific RCM data compared with PM data, which can be attributed to the few number of essential MOVs modeled in the HPCI, RCIC, RHR/LPCI, and LPCS PRA fault trees.