ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
David Dziadosz, Timothy N. Ake, Mehmet Saglam, Joe J. Sapyta
Nuclear Technology | Volume 147 | Number 1 | July 2004 | Pages 69-83
Technical Paper | Thoria-Urania NERI | doi.org/10.13182/NT147-69
Articles are hosted by Taylor and Francis Online.
A light water reactor (LWR) fuel assembly design consisting of a blend of weapons-grade plutonium and natural thorium oxides was examined. The design meets current thermal-hydraulic and safety criteria. Such an assembly would have enough reactivity to achieve three cycles of operation. The pin power distribution indicates a fairly level distribution across the assembly, avoiding hot spots near guide tubes, corners, and other sections where excessive power would create significant loss to thermal-hydraulic margins.This work examined a number of physics and core safety analysis parameters that impact the operation and safety of power reactors. Such parameters as moderator coefficients of reactivity, Doppler coefficients, soluble boron worth, control rod worth, prompt neutron lifetime, and delayed-neutron fractions were considered. These in turn were used to examine reactor behavior during a number of operational conditions, transients, and accidents. Such conditions as shutdown from power with one rod stuck out, steam-line break accident, feedwater line break, loss of coolant flow, locked rotor accidents, control rod ejection accidents, and anticipated transients without scram (ATWSs) were examined.The analysis of selected reactor transients demonstrated that it is feasible to license and safely operate a reactor fueled with plutonium-thorium blended fuel. In most cases analyzed, the thorium mixture had less-severe consequences than those for a core comprising low-enriched uranium fuel. In the analyzed cases where the consequences were more severe, they were still within acceptable limits. The ATWS accident condition requires more analysis.