ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Luder Tibkin, Mahmoud El-Beshbeeshy, Riccardo Bonazza, Michael L. Corradini
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 92-104
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35147
Articles are hosted by Taylor and Francis Online.
Detonation wave theory was applied to the physical process of a vapor explosion. Initially, our experimental observations using hot water as the fuel and saturated refrigerant liquid as the coolant were analyzed with this technique. These tests are notable since peak explosion pressures were far below the critical pressure of the coolant. From the analysis, the volume fractions of the coolant vapor and the volume ratio of the two liquids prior to the explosion were estimated from the measured peak explosion pressures and associated explosion propagation velocities under the assumption that the process was steady and one-dimensional. Complete Hugoniot curves were constructed, and the detonation condition was initially determined under the assumption that flow velocity behind the shock was equal to the mixture sound speed. This assumption was checked with the tangency condition between the Rayleigh line and Hugoniot curve at the Chapman-Jouguet point, as well as the existence of a minimum in the entropy change across the shock wave. The point of minimum entropy showed good agreement with the graphical tangency point, but was slightly different than the sound speed criteria in pressure (<2%) with a larger difference in propagation speed (50%). This discrepancy between the three criteria becomes insignificant as the explosion pressure rises. This is demonstrated by examining a tin-water explosion experiment. This technique appears to be a useful tool to estimate initial conditions for subcritical vapor explosions.