ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Hikmet S. Aybar, Tunc Aldemir, Richard N. Christensen
Nuclear Technology | Volume 111 | Number 1 | July 1995 | Pages 1-22
Technical Paper | Fission Reactor | doi.org/10.13182/NT95-A35140
Articles are hosted by Taylor and Francis Online.
The Ohio State University Inherently Safe Reactor (OSU-ISR) is a conceptual design for a 340-MW(eIectric) [1000-MW(thermal)], natural circulation, indirectcycle, small boiling water reactor. All the OSU-ISR primary loop components are housed within a prestressed concrete reactor vessel (PCRV). The OSU-ISR performance has been investigated as a function of several design parameters in an attempt to better understand the interdependency among the system variables and hence to establish a knowledge base for the refinement of the conceptual design. The computational tool used in the study is a Dynamic Simulation for Nuclear Power Plants (DSNP) code whose predictions for the steady-state OSU-ISR performance compare favorably with RELAP5/MOD3 results for most of the operational characteristics of interest. The results show that (a) the key quantity that governs the OSU-ISR steadystate performance is the pressure difference between the primary and the secondary loops, (b) the magnitude of water-level swell (which occurs due to void formation in the core during operation and which affects the size of the steam separators that need to be used) can be more effectively controlled by varying the PCRV water level at cold shutdown rather than by varying the internal PCR V dimensions, (c) turbine inlet steam quality can be controlled without substantially affecting the other operational parameters by varying the secondary mass flow rate, and (d) the PCR V pressure and core exit steam quality are most sensitive to changes in the secondary loop pressure. The results also show that if there is a large drop in the secondary loop pressure (e.g., due to a steam line break), then although this pressure drop may induce a large drop in the PCRV pressure, the core flow, and hence core cooling capability, will not be appreciably affected.